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Abstract-eertain classes ofproblems in optimal structural design lead naturally to the introduction
of periodic microstructured media as the basis material for the construction ofa mechanical element.
The unit cell size of these microstructures cannot be arbitrarily small, as suggested by the pertaining
optimization analyses up to date, and has to be related to the structure's overall dimensions.
One physically important mechanism that provides such microstructure size limitations is elastic
buckling.

An analytically tractable model of an infinite periodic rectangular planar frame with axially
compressed beams is used to study the optimal buckling loads. For any given design, one can find
a critical stress above which buckling instability occurs. In addition one can also find the region in
the design space for which the optimal critical mode is a global one, i.e. its characteristic length is
much larger than the unit cell size. In this region of the design space one can safely use the
homogenized material properties to describe the medium, for they provide all the information needed
to predict a global buckling instability. In addition to the detailed parametric study for the model
problem investigated here, implications for the optimal design against buckling of more general
structures are also briefly discussed.

I. INTRODUCTION

A very interesting feature of structural optimization is that in certain cases the optimal
solution to the problem involves microstructures. Some of the best known examples of this
behavior include the compliance optimization of plates under bending, where the optimal
solution involves stiffeners, or bars under torsion, where the optimal solution generates a
porous material (for further details see the comprehensive review article by Olhoff and
Taylor, 1983). Moreover, microstructured optimal solutions are also found in the general
shape optimization problem (see for example Kohn and Strang, 1986; Bendsee and Kikuchi,
1988).

For optimization purposes it is usually sufficient to consider only composites with
periodic microstructures (see Kohn, 1988). A consistent way to obtain the macroscopic
properties of such periodic materials is by using the theory of homogenization (see
Bensousson, et al., 1978; Sanchez-Palencia, 1980). For as long as the governing equations
are linear and elliptic, the homogenization method predicts the macroscopic properties of
the medium based on calculations involving only the solid's fundamental cell (see Boccardo
and Marcellini 1976; Bensousson et al., 1978; Kesavan, 1979; Sanchez-Palencia, 1980).

In the majority of the optimization problems investigated so far that lead to micro
structures, there is no way of predicting the size of the microstructure relative to the
strucure's overall dimensions. The reason is that some fundamental physical phenomena
have been omitted from the corresponding models, One such important physical mechanism
that places limits on the size of the microstructure, or equivalently on the allowable stress
levels, is buckling instability in elastic solids. For example in the optimal plate design
problem mentioned before (see Cheng and Olhoff, 1982) the stiffeners cannot be arbitrarily
thin for they will buckle under compressive stresses.
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In this work attention is focussed on the optimization of microstructured solids against
buckling, with particular emphasis on the implied cell size limitations mentioned above.
The difficulty of induding the possibility of buckling into the modeling of the problem is
that the governing equations are inherently nonlinear. Consequently, as shown by Muller
(1987), the results of homogenization theory which are based on calculations involving one
unit cell break down and the whole medium has to be considered. The reason for this
phenomenon is internal buckling which, as discussed in Triantafyllidis and Maker (1985),
breaks the fundamental unit cell symmetry of the structure and leads to more complicated
equilibrium paths. As shown in Triantafyllidis and Maker (1985), the standard homogenized
model based on one cell cannot predict any of the local instabilities, i.e. instabilities of length
scale comparable to the unit cell size. but only the global ones, i.e. the instabilities whose
characteristic length is much larger than the unit cell dimension. Moreover, the critical
stress levels that trigger the local instabilities can be considerably lower than the ones
corresponding to the global instabilities. It should also be mentioned at this point that the
issue of optimization of microstructured solids against buckling has also been considered
by Mignot, et al. (1980); Suquet (1981) for the case of plates. However, due to the
approximations involved, a local buckling instability is impossible in their models which
consequently do not exhibit any scale effects.

The model problem to be studied here is that of an infinite periodic plane rectangular
beam frame whose members are subjected to compressive axial forces. Depending on
geometry and material properties the buckling mode can be either a local one or a global
one. Of particular interest is the range of parameters for which the buckling mode is a
global one, for in this case the instability can be predicted by studying the homogenized
solid. The advantage of this model is that the critical loads corresponding to the local
and global buckling modes can be found analytically, thus considerably simplifying the
optimization calculations.

For a given mass per unit area of the frame and fixed ratio of applied normal stresses
one seeks the optimal design of the unit cell (i.e. beam cross sectional properties and sizes)
that maximizes the minimum buckling load. All the optimization calculations reported here
were carried out numerically for a wide range of design parameters. It is found that for
small densities of the solid and for slender beams the optimal solutions correspond to a
local mode while for higher densities or stubby beams the global mode is optimal.

For every set of cell design parameters one can thus establish a dimensionless critical
stress per unit cell length ratio above which a buckling instability will occur, thus providing
a critical size for the unit cell in the case of given applied stress. Moreover one can also
determine the part of the design space for which the global mode is the optimal one against
buckling, thus providing a safe region in which homogenization theory results can be
employed. In the calculations reported here the aforedescribed boundary in design space
between global and local modes is almost independent of the ratio of the applied stresses.
This encouraging result suggests that it is perhaps possible to compute relatively simple
design requirements that need to be satisfied in order to avoid local buckling when averaged
material laws are used in optimizing composites with microstructures.

2. MODEL DERIVATION

The structure to be modeled here is the infinite rectangular planar frame shown in Fig.
lao It consists of horizontal and vertical planar beams, Le. allowed to deform only in the
XI> X2 plane, which are welded together at the vertices ofan infinite rectangular grid pattern
of unit cell dimensions 2al x 2a2'

All the beams in the x. t direction have axial stiffness EA« and bending stiffness EI«
where E is the material's Young modulus, while A. and 1« are the cross sectional areas and
moments ofinertia corresponding to the beams in the x. direction respectively. The structure
is deforming under the action of compressive forces N. as shown in Fig. lao Assume that

t Note: from here and subsequently all Greek indices range from 1 to 2.
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Fig. I. (A) Schematic diagram of the periodic infinite planar frame. (B) Schematic diagram of the
frame's unit cell.

the compressive forces Nm are increasing in proportion to a scalar factor A, which will be
specified in the sequel. For low values of the compressive forces, i.e. for A near zero, the
beams remain straight and the corresponding unique solution in which all the beams are
loaded axially and have zero moment and shear resultants is termed principal solution.

As A keeps increasing away from zero, it reaches a particular value Ae> at which a
bifurcation buckling instability occurs. Unlike the principal solution, nonzero shear forces
and bending moments are developed in the bifurcated equilibrium path and the structure's
deformed configuration is no longer rectangular nor (in general) periodic.

The critical load Ac can be found as follows. At the onset of bifurcation, incremental
equilibrium for the unit cell (see Fig. lb) implies, using the standard matrix method for
nodal force equilibrium (see for example Livesley, 1968), the following relations between
the force and displacement increments t and ci at the five nodes of the cell :

0= tc = [(KII)AC+(KII)sC+(K11)A'C+(KII),clcic

+ [(K I2)AcJciA+ {(KI2)sclciB+ [(K 12)A'clciA,+ [(K 12),clci,

tA = [(K21)Aclcic +[(K22)AclciA

tB = [(K2Ihdcic +[(K22)BdciB

tA, = [(K21)A'dcic +[(Ku)A'dciA,

t, = [(K2I),dcic + [(K22),dci, (I)
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Here the elements of the nodal force vector f are the Xl and Xz components of the
nodal force plus the nodal moment. The corresponding elements of the displacement vector
d are the work conjugate components of the nodal displacement plus the nodal rotation.
Moreover, (K,p). are the incremental stiffnesses corresponding to the beam element e, where
e stands for AC, BC, A'C, B'C. The indices I and 2 correspond to the two ends of the
member in question and should not be confused with the corresponding directions in the
lattice. The calculation of (K,p). for the structure and the loading in Fig. Ib follows a
procedure exposed in detail by Livesley (1968) and hence need not be repeated here. For
reasons of continuity of the presentation as well as for reference purposes all the necessary
formulas for the calculation of (K,p). are given in the Appendix (see (A3-AS».

Note that the infinite frame is a two dimensional elastic structure. Hence at bifurcation
it has to satisfy a homogeneous linear equation of the type (L,Py6().c)Uy.6),P = 0 (see for
example the chapter on stability in Ogden, 1984). Here L,P)'6().c) is the structure's incremental
moduli tensor evaluated at the onset of bifurcation and U, is the corresponding eigenmode.
Following Geymonat et al. (1989), one can show that the mode u,(x"xz) is of the form:
U, = exp [i(WIXI +wzxz)]v,(x" xz), where v,(x" xz) is a periodic function of X" Xz with the
same periodicity as that of the structure's. Consequently. for the beam model employed here,
one can deduce the following relations for the unit cell at bifurcation:

dA' = exp (2iw,al)dA, dB' = exp (2iwzaz)dB

fA' = - exp (2iwtal)fA' fB, = -exp (2iwzaz)fB' (2)

Introducing (2) into (I) one finds that, for (wla" wzaz) -:1= 0,0), a nontrivial solution dc
to (I), (2) exists when:

det(K) = 0

K == (Kll)AC+(KII)A'C+(KII)BC+(K\lh,c

- [Jl\(KdA'C+ (KdAcl [(KdAC+ (KZZ)A·d- \ [(KZ\)A'cl JlI + (KZ\)Ad

- [Jlz(KdB'c+ (K dBd [(K 22hc+ (Kzzh·d- I[(Kzl)B'cl Jlz+ (Kz1hcl

Jl, == exp (2iw,a,).

(3)

The components of the stability matrix K are found from (3) by substituting the
expressions for (K,p). in (A3-AS) and subsequently carrying out the required matrix inver
sions and multiplications. The results are:

K 1\ = 2E[mla, sinz (wla\)+cz(mz)Zaz(Fz-Bz) sinz (wzaz)]

K 12 =Kz\ =0

K 13 = K 31 = 2E[cz(mzaz)ZFz sin (wzaz) cos (wzaz)]

K zz = 2E[mzazsinz (wZaZ)+cl(m\)Zal(FI-BI) sinz (wlal)]

KZ3 = K32 = 2E[cl(mla\)zF. sin (wlal)cos (wlal)]

K 33 = 2E{cl(m\)z(al)3[F1-G\ sinz (w\al)]+cz(mz)Z(az)3[Fz-Gz sinz (wzQz)]) (4)

where for convenience the following notations have been employed:

m, == A,/(a,)Z, c, == 12I,/(A,)Z,

F, == [(a,)Z-(r,)z]f12a" B, == (/3,)Z/12 = N,IEc,(m,a,)Z,

G, == {[(a, +.,)Z] I [2(a, +.,) - (P,)Z] - [(.,)Z la,])112.

The functions of a, (Pa.) , and .a.(P,) are given in the Appendix (see (A4».

(5)
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From (3-5) it is observed that for given dimensionless wave numbers w.a. of the
bifurcation eigenmode, geometric parameters a., m.. c. (or equivalently for given dimensions
of the unit cell 2a.. moments of inertia I. and cross sectional areas A. of the beams) and
modulus of elasticity E, one can find the axial forces N. at the onset of buckling. The
compressive loads N. are assumed to be applied in proportion to a dimensionless load
factor ;, which for convenience is defined by:

(6)

Here N,/2a2' N 2/2a, represent the average compressive stresses on the frame along the
x, and x 2 directions, respectively. In a loading process the angle () (or equivalently the ratio
of the average stresses in each direction) is considered fixed while I, increases away from
zero.

If A*(w.a.) denotes the minimum positive root of (3), then the critical load ;'e of the
structure is the minimum root over all the possible modes, i.e.

I'e = mino"<u,u,,,~dA*(w.a.)] wheredet[K(I.*)] = O. (7)

Here only the interval w.a. E [0, n/2] x [0, n/2] needs to be considered since the form of
K implies that det [K] is a polynomial in sin 2 (w.a.) == s. (det [K] = ~ [A./i(I,)S.Sp
+A,p;.(},)s,spsJ, where summation is implied for repeated indexes from I to 2. The
coefficients A./i(}') are given in (8».

Two typical A*(S.) surfaces are plotted in Fig. 2. More specifically Fig. 2a gives I,*(S.)

(8)

Fig. 2. (A) Typical critical load ;.,. as a function of the mode's wavenumber parameters s, ;;; sin 2 (w,a,)
for a frame with slender beams. (B) Typical critical load i.e as a function of the mode's wavenumber

parameters s, ;;; sin 2(w,a,) for a frame with stubby beams.
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for relatively slender beams while Fig. 2b shows the surface ;.*(s,) for stubby beams. Notice
that the critical load ;'e (the minimum of A.* according to (7» occurs near the origin
s\ = S2 = O. This property has been verified numerically for a great number ofcombinations
of the various geometric parameters of the frame and is consequently assumed to be always
true. The fact that the surface ;.*(s,) is singular at the origin 5, = S2 = 0 comes as no
surprise, as this point corresponds to two different bifurcation modes: On one hand, observe
from (2) that 5, = 0 (or equivalently W,G, = nn for n E Z) corresponds to a mode that is one
cell periodic in the x, direction. On the other hand, by taking the limit w.a. -+ 0 along
different lines in the w.a. plane (i.e. assuming that waa. = sO. with I' -+ 0 but
(0,)2+ (oD = 1) one finds by using (3) and (4), that at the limit I' -+ 0, ;.*(1'0.) tends to
the minimum positive root of:

A I I (A.) == cI(ml)3(a,)2 [-cI(mr)Z(al)3FIB I +cz(mz)Z(az)3F2(FI - B dl
A 12 (A.) == (1/2) {mlmzataZ[Cr(ml)Z(at)3FI +cz(mz)Z(a z)3Fz]

- Ct cz(mtmz)Zataz [CI (ml)Z(al)3FIB I(Fz- Bz) +c2(ml) Z(az) 3FzBz{FI - B I)]}

A 22 (A.) == cz(mz)3(az)Z[ -cz{mz)Z(az)3F1Bz+ct(ml)Z(aYFI(F2-Bl»)' (8)

It can be seen, by calculating for the above root of (8) the corresponding eigenmode
ofK(A.*), that the resulting beam deformations are long wavelength modes, i.e. modes with
characteristic wavelengths A, = 2nlw7, » 2a, (since w7,a. -+ 0), which exceed by far the unit
cell size. The coexistence of these two different types of modes at the neighborhood of the
origin explains the resulting singularity.

Finding the bifurcation load 1.*(0,0) at the origin itself requires special care as rigid
body modes can appear since for all loads d,. = [x, y,O] is an eigenvector (with arbitrary
x, y) for the corresponding K().). In this case it is not difficult to see that ;.*(0,0) is the
solution of Kn = °(see (4), (5» and the corresponding mode is obviously the mode which
is one cell periodic with respect to both directions. In all the numerical calculations ;.*(0,0)
is found to be considerably larger than A.,.•

According to our (numerically validated) assumption, A.c is always found near the
origin of the w7,a7, plane. Thus A.c is the minimum possible root of (8) over all O. with
(Ol)z+ (Oz)Z = 1. A simple inspection of (8) gives two possible cases: either (i) OIOZ =°
at lc or (ii) OrOz =I: 0 at Ac.

• When case (i) occurs lc satisfies Atl(A.c) = °ifOz = 0, or Ad;.,,) = 0 if OJ = O.
• When case (ii) occurs lc satisfies A j t(lc)A22(lJ - (A 12(lc»Z = °with A II (),c) , A1Z()'c) > °

and A lz(lc) < 0.

The interpretation of the bifurcation mode for each case is of interest. In case (i), since
0" = 0, the minimum l occurs along one of the 57, axes. This means that the eigenmode is
one cell periodic with respect to one of the x" axes with corresponding wavelength A, = 2a"
and that it has an infinitely long wavelength in the other direction. For the case (ii), since
n.. =I: °but OJ,G" = en.. -+ 0, the wavelength of the corresponding critical mode is infinitely
long in both the XI and X2 directions.

Consequently case (i) is identified with the occurrence of a local mode while case (ii)
corresponds to a global (long wavelength) mode. At this point one should also remark that
had Ac occurred at any other point but the origin of the [0, 1] x [0, I] interval in the (s\> S2)

plane, the corresponding mode would have been local in nature as both wavelengths in that
case are finite. The fact that for the frame in question the minimum l*(sa) occurs in one of
the corners of the [0, 1] x [0, I] interval of the (s h s2) plane is due to the symmetry of the
unit cell with respect to the x, axes. For such a symmetric cell, and under the assumption
that the critical eigenmode is unique, it can be shown that each w"a" has to be either°or
n/2, i.e. 5" = 0 or I, and this justifies that ..1.* is minimal at one of the corners of the
[0,1] x [0, I] interval in the (5\>52) plane. For an asymmetric unit cell the lowest critical
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mode is most probably local in nature and the $2'S corresponding to i'e are in general
expected to be interior points of the [0, 1] x [0, 1] interval.

3. FORMULATION OF THE OPTIMIZATION PROBLEM

In the previous section the governing equations for the buckling of the infinite periodic
frame have been established. The next step is to formulate a structural optimization problem
for maximizing the critical buckling load of the frame. This problem is stated in the standard
max/min form :

For fixed e, find:

(9)

subject to a constraint on the given mass per unit area, p.
The solution to the minimization part of the problem, Le., the determination of i'e, is

already found in the previous section and corresponds either to a local or global buckling
mode depending on the values of p, eand the point of the design space D. To simplify the
task at hand, the design space is reduced by assuming A I = A 2• Moreover, by defining the
cell aspect ratio r by r == 01/02 and the dimensionless mass per unit area of the frame p by
(unit density of the beam material is tacitly assumed):

(10)

one can rewrite the parameters m~ in (5) as:

(11)

In addition one can introduce the angle 4> to be tan 4> == [2/11' From (5) and in view
of the assumption A I = A 2 one obtains that the beam shape coefficients c~ take the form

CI = ccos4>, C2 = csin4> (12)

where the beam shape coefficient c == «CI)2+(C2)2)1/2 will be considered fixed during the
optimization process.

Taking into account the parameters introduced above, the optimization problem in
(9) can be recast in the following form :

Find:

max,1 {A.c} for given p > 0, c > 0 and eE [0, n/2]

A == {4>, riO < 4> < n/2, r > O}

where A is the new design space and A.c is the lowest positive root of:

(13)

(14)

All == Hcos4>[-F)B Icos4>+rF2(F1-B I) sin 4>]

A 12 == {FIcos 4>+rF2sin 4>-H2sin 4> cos 4> [F)B.(F2-B2) cos 4> +rF2B2(F) -B1) sin 4>]}/2

A 22 == Hsin4>[ -rF2B2sin 4>+F)(F2-B2) cos4>l

A == (AI2)2_AI)A22' H== 2pc[(l+r2)1/2]j(l+r).

In the expressions above F~ are still given in terms of Q2({J2)' t~({J2) by (5), while in
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view of (6), (II), (12), B, in (5) take the form:

B I = ;.cos 8(1 +r)/Hpcos¢, B~ = ;. sin 8(1 + l,r)/Hpsin ¢. (15)

Finally, u,(P,), T,(P,) are given in terms of p, by (A4) while p, are still given in terms
of B, by (5).

The optimization problem is thus completely specified by (13)-( 15). If for a given mass
per unit area p, given beam shape parameter c and given load angle f), the optimal buckling
load Ac satisfies A II (AJ = 0 or A 22U.J = 0, then according to the discussion of Section 2,
the critical mode is local in nature. If on the other hand, AVe) = 0 (assuming of course
A 12(AJ < 0) the corresponding critical mode is global in nature.

4. COMPUTATIONAL RESULTS

It is noted that the symmetry properties of planar frame model imply that only loading
angles f) between 0 and n/4 need to be considered, as designs for n/4 ~ f) ~ n.2 are covered
by a switching of axes. The optimal design for a loading angle n/2 - f) (f) E [0, n/4]) is then
given by (l/roP, n/2 - qJ0P), where (rOP, qJ0P) is the optimial design for the loading angle f),

while the corresponding modes are obtained by symmetry with respect to the XI = x21ine.
The optimization ofbuckling loads is complicated by the fact that the smallest positive

root of a nonlinear function may have nondifferentiable and even discontinuous dependence
on parameters in the function. For linear, elliptic eigenvalue problems the smallest eigen
value is differentiable when the root is simple and the eigenvalue has generalized gradients
when it is multiple (see Haug, et al., 1986). Numerical experiments indicate that Aloe, the
local buckling load for the present problem (i.e. the lowest positive root of A II (A) = 0, see
(14» is differentiable as a function of rand qJ, while the global buckling load ;'gIO (Le. the
lowest positive root of A(A) = 0 for which also A I2U.) < 0, see (14» is discontinuous at
some values of rand qJ. However, the critical load, i.e. the minimum of the local and global
buckling loads, is found to be continuous and has subgradients at points of non
differentiability. These properties mean that the optimization problem formulated in (13)
can conveniently be solved by a sequential quadratic approximation algorithm.

The results presented here are computed by employing the program MINCF developed
by Madsen and Tingleff (1986). Some typical results from the dependence of the critical
load Ac on the aspect ratio r calculated for different values of the mass per unit area p and
the beam shape parameter ¢ (and for fixed values of the beam shape parameter c and the
load angle 0) are depicted in Fig. 3. In Fig. 3a (¢ = 0.4842 rad) the beams in the XI direction
are stiffer, in Fig. 3b (¢ = 0.7842 rad) the beams in the XI and X2 direction are identical and
in Fig. 3c (¢ = 1.0842 rad) the beams in the x I direction are weaker. In all cases the critical
load is found to depend continuously on the design parameters. Additional calculations,
not shown here, gave similar results for the critical load as a function of the parameter ¢.
However, it is interesting to note that, although the local buckling load ;'1"" is always a
continuous function of the design parameters, this is not generally true for the global
buckling mode Agio'

The dependence of the local and global critical load on the aspect ratio r for different
mass per unit area p (and for fixed values of the beam shape parameters c, ¢ and the load
angle 0) is depicted in Fig. 4. The lowest mass per unit area (log p = - 1.00) corresponds
to Fig. 4a, the intermediate mass per unit area (log p = -0.54) corresponds to Fig. 4b,
while the highest mass per unit area (log r = -0.35) corresponds to Fig. 4c. Note from
Fig. 4a and Fig. 4b that for the lower mass per unit area the global buckling load is a
discontinuous function of the cell aspect ratio. For a mass per unit area high enough as to
ensure that the global load is the critical one the situation reverses itself as one can see in
Fig. 4c. Notice that as expected in all cases the critical load is a continuous function of
r thus justifying the numerical algorithm adopted for the solution of the optimization
problem.

It turned out that the buckling optimization problem treated here is of such a nature
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Fig. 3. (A) Critical load A, as a function of the cell aspect ratio, for different mass per unit area
parameters p. Results calculated for c == 30, t/I == 0.4842, (J == 0.5236. (B) Critical load .1.< as a
function of the cell aspect ratio, for different mass per unit area parameters p. Results calculated
for c == 30, t/I == 0.7842, (J == 0.5236. (C) Critical load A,. as a function of the cell aspect ratio, for
different mass per unit area parameters p. Results calculated for c == 30, t/I == 1.0842, (J == 0.5236.

that multimodality generically does not occur. Thus, one can find a curve in the e-p plane
which separates the sets of beam shape parameters c and densities p that correspond to
local modes and global modes. These curves are of particular interest and they will be
discussed subsequently in more detail.

The computer time used for the parametric study of the optimization problem (13)
can be reduced considerably by noting that for the local buckling load A.loe, the quantity
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calculated for p ... cxp (- 1.00) c >= 30, tP ... 0.1842, 6 ... 0.5236. (B) LocaI At... and global Ap,
buckling loads as functions ofthe cell aspect ratio r. Results calculated for p ... exp (-0.54) c .. 30,
tP ... 0.7842. 6 ... 0.5236. (C) Local Ale< and global Arlo buckling loads as functions of the cell aspect

ratio r. Results calculated tor p ... exp (-0.35) c ... 30, t/J ... 0.71142, IJ "'0.5236.

).loclcp 2 is a constant, say r1oc:, independent of c and p. Thus, the optimal local root Afl: and
hence rl:!:, is computed for one choice of c and p, with optimal design r~, ~. From this,
the optimal local buckling load ).~ is given by ;,r~ = cp2ro~ for all values c and p while
the corresponding optimal design is the same for all values of c and p. This information
can then be used to reduce the number of times the minimization problem (13) has to be
solved. For given values of c and p the global buckling load ~a1o is computed for the optimal



Design of microstructure<! medium 735

design parameters r~, q>~ and if A~ ~ Agio one immediately ensures that the solution to
(13) is given by (Al:l:" rl:l:" t'Pl:l:,). If this inequality is not satisfied for the specific choice of c
and p, the global buckling load is the critical one and (13) has to be solved.

The derivative information needed for the iterative solution procedure used to solve
the optimization problem (13) was obtained by numerical differentiation. This requires a
high precision in the computation of the roots of A II(A), AdA) and A(A), and hence it is
very time consuming. However, in view of the algebraic complexity of the aforementioned
quantities in terms of the design variables (see (14), (15», the straightforward numerical
differentiation seems to be the only viable method.

The roots of Au(A), A22(A.) and A(A) are computed by direct search followed by a
bisection method. For every value of c and p the optimization is carried out using several
different starting points for the iterative procedure. Interestingly, all starting points give
rise to the same optimal designs indicating the existence of only one local maximum which

(8)

0.90

O.7~

Fig. S. (A) Optimal critical load ..1.. as a function of the mass per unit area (y ... log p) and the beam
shape parameter (x ... c{IOO) for a load angle fJ ... 0.7854. (B) Optimal aspect ratio r as a function
of tile mass per unit area (y -log p) and the beam shape parameter (x "" c{IOO) for a load angle
(J ... 0.7854. (C) Optimal beam shape parameter ~ as a function of the mass per area (y - log p)

and the beam shape parameter (x ... clIOO) for a load angle (J ... 0.7854.
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is also theglobal maximum. The stopping criteria for the optimization is eithera requirement
that the Kuhn·Tucker conditions for an optimum are satisfied to a certain precision or that
the relative improvement in the objective is below some low value (~ 10- 6). It turns out
that the optima for the problem are "flat", so that it is extremely time consuming to obtain
very high precision in the determination of the resulting optimal designs. This insensitivity
of the optimal load on the values of rand 4> explains the "asperities" of the corresponding
optimal surfaces (see Figs. 6b-8b and Figs 6c-8c).

The results of the parametric study are shown in Figs 5-8, where optimal critical loads
Ae and corresponding designs rand qJ are shown as functions of the beam shape parameter
c and the mass per unit area p. More specifically Figs 5-8, give the optimal solution of the
frame buckling problem for load angles () == n/4, e== rr.!6, () == n/12 and () == 0 respectively;
parts A, Band C ofeach one of these figures depict the dependence of the optimum critical
load Ae, the optimal cell aspect ratio rand the optimal beam shape parameter rP as functions
of the mass per unit area parameter p and the beam shape parameter c. Note that for very

(AI

0.6

). 0.3

0.0

(81

0.90
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O.7~

Fig. 6. (A) Optimal critical load ~ as a function of the mass per unit area (y .. log p) and the beam
shape parameter (x '"'c{IOO) for a load angle 8 "" 0.5236. (8) Optimal aspect ratio r as a function
of the mass per unit area (y -log p) and the beam shape parameter (x ... clIOO) for a load angle
(J ... 0.5236. (C) Optimal beam shape parameter tP as a function of the mass per unit area (;. = log p)

and the beam shape parameter (x .. c/IOO) for a load angle 8 ... 0.5236.
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stubby beams (i.e. for high densities p or high beam shape parameters c) the optimal critical
load corresponds to a global mode. For slender beams (i.e. for low densities p and low
beam shape parameters c) the optimal design corresponds to a local mode. It is interesting
to note that for all loading angles and aU parameters c and p, the optimal design is not far
from the completely symmetric design ofr =I and t:p = 'ltj4, while the most unsymmetrical
designs are obtained for a loading angle fJ =0, as is to be expected. Obviously the flat part
of the r versus c, p and the tP versus c, p surfaces in parts Band C of these figures
corresponds to the case where the local mode is the optimal one as it has been previously
explained.

The values of the beam shape parameter c and the density p for which the optimum
critical buckling solution shifts from local to global modes are shown in Fig. 9. Notice that
this boundary is surprisingly insensitive to variations of the loading ratio angle O. Most
important, the curves in Fig. 9 in conjunction with Figs. 5a-8a contain the sought after size
effect of buckling on the microstructure. Since the dimensionless critical load A( is by

(8)

0.90
r

O.1~

(C)

0.80

• 0.7~

0.70

Fig. 7. (A) Optimah:riticalload)..as a function of the mass per unit area (y "" log p) and the beam
shape parameter (x ... clIOO) for a load angle 6 ... 0.2618. (B) Optimal aspect ratio r as a function
of the mass per unit area (y ,.log p) and the beam shape parameter (x ... ('/100) for a load angle
(J =0.2618. (C) Optimal beam shape parameter 4J as a function ofthe mass per unit area (y = log p)

and the beam shape parameter (x =c/l00) for a load angle 9 ... 0.2618.
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definition (see (6» a critical stress, as a fraction of the Young's modulus E, divided by half
the unit cell diagonal [(a,)z+(a2n\i2 one determines from the surfaces in Figs 5a-8a the
critical unit cell dimensions below which buckling will occur for a given stress level. In
addition the curves in Fig. 9 determine the critical unit cell parameters below which a local
buckling will occur for a given stress level.

Hence, for a given unit cell size, a standard homogenization theory approach can be
safely used to describe the properties of this medium only for dimensionless stress levels
remaining below the surface ofoptimal Joe for the corresponding values ofp and c. Moreover,
if for the cell size in question the dimensionless density p and corresponding beam shape
parameter c are in the global mode region of Fig. 9 then a homogenized model can be
employed irrespective of the applied stress levels since it can predict the global instability
as discussed in Triantafyllidis and Maker (1985).

(A)

0.8

). 0.4

0.0

(8)

0.90
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(e)

0.80

", 0.75

0.70

Fig. 8. (A) Optimal critical load Ac as a function of the mass per unit area (y = log p) and the beam
shape parameter (x = c/lOO) for a load angle (J = O. (B) Optimal aspect ratio r as a function of the
mass per unit area (y = log p) and the beam shape parameter (x = c/lOO) for a load angle (J = O.
(C) Optimal beam shape parameter /fJ as a function of the mass per unit area (y = log p) and the

beam shape parameter (x = c 100) for a load angle (J = O.
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Fig. 9. Boundaries in the mass per unit area p versus beam shape parameter c separating the region
where the critical mode is a local one from the region where the critical mode is a global one.

Boundaries calculated for various values of the load angle /I.

5. CONCLUSIONS

The purpose of the present work is the study of size effects in optimization problems
involving microstructure, an issue of practical interest that has not been addressed thus far.
One important physical mechanism on which attention is focussed in this study and which
relates the size of the unit cell with the applied stresses is elastic buckling.

In order to avoid boundary effects, an infinite periodic structure is considered. More
over, the structure's unit cell consists of axially compressed elastic beams thus greatly
facilitating all the pertaining buckling load calculations that can be carried out analytically.
By optimizing the aforedescribed periodic medium against buckling. i.e. by searching for
the maximum possible minimal buckling load over a set of designs, one can come up
with maximum allowable stresses for a given cell size or equivalently with minimum size
requirements for a given stress state.

In addition, one can also identify the regions in the design space that correspond to a
local or a global optimal buckling mode. When a global mode is the critical one, i.e. when
the wavelength ofthe buckling mode is much larger than the cell size, the global instability
unlike the local one--can be predicted by studying the homogenized properties of the
structure. Consequently one can provide safe regions in the design space for which a
homogenization theory can be employed. Such information is of significant help for micro
structure related optimization analyses with respect to different criteria, for all the infor
mation they use are the homogenized properties of the solid without any idea about their
range of validity.

The methodology presented here for the determination of the critical loads and modes
is applicable to arbitrary periodic microstructures. The only difference with the general case
is that the solution to the linearized stability equations with the w. dependent boundary
conditions will require finite element techniques, thus making the optimization problem
much more time consuming. In principle the local-global boundary in design space can
also be found numerically.

The issue of microstructure size effects in optimal design is a very important one for
it provides with realistic information about the proper size of the microstructures. The
present analysis provides a methodology to design the microstructure safely against
buckling. Important questions that still remain to be solved are the influence of the bound
aries of the macroscopic structures or the study of other mechanisms that also determine
size such as stress concentrations.
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APPENDIX A. INCREMENTAL STIFFNESS MATRICES OF A PLANAR FRAME

The derivation of the incremental stiffness matrices for a planar frame with axially prestressed members has
already been presented in the literature and the interested reader is referred to the very readable book by LivesIey
(1968) for further details. For reasons ofcompleteness of the presentation, however, all the appropriate formulas
for the incremental stiffness matrices of the prestressed frame that were employed in Section 2 will be recorded
here.

The starting point for the derivations is the potential energy for a beam of length a, cross sectional area A,
moment of inertia I and Young's modulus E which is taken to be

E= (1/2) f: {El(w..x)Z +EA[u..+(1/2)(w..)z]Z} dx+Boundary Terms (AI)

where u(x), w(x) are the axial and normal deflections of the beam. Assuming that the beam is subjected to end
displacements and rotations:

d, = [u(O), w(O), w..(O»), dz = [u(a), w(a), w..(a»)

one can with the help of the equilibrium equations oE ... 0 express the potential energy in terms of the imposed
end conditions. The incremental stiffness matrices relating the increments of the force vecton t. and tz at x ... 0
and x = a respectively to the corresponding work conjugate increments of the displacement vecton 41, and az•are
given by:

t. = I:K.,a,. withK.,!5 oE/od.i3d,. (A2)

For the case of a beam prestressed by a compressive axial force N, the derivatives of the potential energy
shown in (A2) evaluated at the (straight) principal solution in which u(x) - -xN/EA+const, w(x) - 0 give the
following results:
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where the coefficients hI> h2, h), h. depend on the axial force Nvia:

hi == «(J+t)/6-IP/I2, h2 == «(J+t)/6, h) == (J/4, h. == t/2

(J == p(sin p-pcos fJ)/[2(I-cosP) -psinPl

t == P(fJ -sinfJ)1 [2(I-cos fJ) - PsinfJ]

fJ2 == Na 2/£1.

0 0

12£1 6£/ h
2-7h,

a2 (A3)

_ 6£1h
2

2£1h.
a2 a

(A4)

~]

The above results hold for the case of the x I axis aligned with the axis of the beam. If, as in the case of the
application considered in Section 2, the axis of the member in question forms an angle '" with respect to the x I

axis (recall that all the nodal forces and displacements of the entire structure are resolved with respect to the same
frame XI> xJ then the K.p in (A2) are replaced by:

(K.,).ew = T(K.p)oIdTT (AS)

[

Cos'" -sin '"

T = sin'" cos '"

o 0
where the (K.p)o/d are the stiffnesses with respect to the local system of the member in question given by (A3).


